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A quick and dirty declaration of all of ZFC under Lestrade. We begin with
logical primitives.

Of course the file isn’t that interesting unless one proves something with it.

Lestrade execution:

postulate ?? prop

>> ??: prop {move 0}

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

postulate -> p q prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare x obj

>> x: obj {move 1}
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declare pred [x=>prop] \

>> pred: [(x_1:obj) => (---:prop)]

>> {move 1}

postulate Forall pred prop

>> Forall: [(pred_1:[(x_2:obj) => (---:prop)])

>> => (---:prop)]

>> {move 0}

declare pq that p -> q

>> pq: that (p -> q) {move 1}

declare pp that p

>> pp: that p {move 1}

postulate Mp pq pp that q

>> Mp: [(.p_1:prop),(.q_1:prop),(pq_1:that (.p_1

>> -> .q_1)),(pp_1:that .p_1) => (---:that

>> .q_1)]

>> {move 0}

declare ded [pp => that q] \
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>> ded: [(pp_1:that p) => (---:that q)]

>> {move 1}

postulate Deduction ded that p -> q

>> Deduction: [(.p_1:prop),(.q_1:prop),(ded_1:

>> [(pp_2:that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

declare univev that Forall pred

>> univev: that Forall(pred) {move 1}

declare x2 obj

>> x2: obj {move 1}

postulate Ui univev x2 that pred x2

>> Ui: [(.pred_1:[(x_2:obj) => (---:prop)]),

>> (univev_1:that Forall(.pred_1)),(x2_1:

>> obj) => (---:that .pred_1(x2_1))]

>> {move 0}

declare univev2 [x=>that pred x] \

>> univev2: [(x_1:obj) => (---:that pred(x_1))]

>> {move 1}
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postulate Ug univev2 that Forall pred

>> Ug: [(.pred_1:[(x_2:obj) => (---:prop)]),

>> (univev2_1:[(x_3:obj) => (---:that .pred_1(x_3))])

>> => (---:that Forall(.pred_1))]

>> {move 0}

declare maybe that (p-> ??)-> ??

>> maybe: that ((p -> ??) -> ??) {move 1}

postulate Dneg maybe that p

>> Dneg: [(.p_1:prop),(maybe_1:that ((.p_1 ->

>> ??) -> ??)) => (---:that .p_1)]

>> {move 0}

define ~ p : p -> ??

>> ~: [(p_1:prop) => ((p_1 -> ??):prop)]

>> {move 0}

define & p q : ~(p -> ~q)

>> &: [(p_1:prop),(q_1:prop) => (~((p_1 -> ~(q_1))):

>> prop)]

>> {move 0}

define V p q : ~p -> q

>> V: [(p_1:prop),(q_1:prop) => ((~(p_1) ->

>> q_1):prop)]

>> {move 0}
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define <-> p q : (p -> q) & q -> p

>> <->: [(p_1:prop),(q_1:prop) => (((p_1 ->

>> q_1) & (q_1 -> p_1)):prop)]

>> {move 0}

define Exists pred : ~ Forall [x => ~pred \

x] \

>> Exists: [(pred_1:[(x_2:obj) => (---:prop)])

>> => (~(Forall([(x_3:obj) => (~(pred_1(x_3)):

>> prop)]))

>> :prop)]

>> {move 0}

The above logical primitives are sufficient, since our logic is classical. Of
course derived rules for the defined logical operations are needed.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

postulate = x y prop

>> =: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}
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postulate E x y prop

>> E: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}

postulate Refl x that x = x

>> Refl: [(x_1:obj) => (---:that (x_1 = x_1))]

>> {move 0}

declare pred [x => prop] \

>> pred: [(x_1:obj) => (---:prop)]

>> {move 1}

declare eqev that x=y

>> eqev: that (x = y) {move 1}

declare predev that pred x

>> predev: that pred(x) {move 1}

postulate Substitution pred, eqev predev \

that pred y

>> Substitution: [(pred_1:[(x_2:obj) => (---:

>> prop)]),

>> (.x_1:obj),(.y_1:obj),(eqev_1:that (.x_1

>> = .y_1)),(predev_1:that pred_1(.x_1))
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>> => (---:that pred_1(.y_1))]

>> {move 0}

postulate Empty obj

>> Empty: obj {move 0}

postulate notinempty x that ~(x E Empty)

>> notinempty: [(x_1:obj) => (---:that ~((x_1

>> E Empty)))]

>> {move 0}

postulate the pred obj

>> the: [(pred_1:[(x_2:obj) => (---:prop)])

>> => (---:obj)]

>> {move 0}

declare unique that Exists [y=>Forall[x=> \

(pred x) <-> x=y] \

] \

>> unique: that Exists([(y_1:obj) => (Forall([(x_2:

>> obj) => ((pred(x_2) <-> (x_2 = y_1)):

>> prop)])

>> :prop)])

>> {move 1}

postulate The1 pred, unique that pred the \

pred
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>> The1: [(pred_1:[(x_2:obj) => (---:prop)]),

>> (unique_1:that Exists([(y_3:obj) => (Forall([(x_4:

>> obj) => ((pred_1(x_4) <-> (x_4 =

>> y_3)):prop)])

>> :prop)]))

>> => (---:that pred_1(the(pred_1)))]

>> {move 0}

declare notunique that ~Exists [y=>Forall[x=>(pred \

x) <-> x=y] \

] \

>> notunique: that ~(Exists([(y_1:obj) => (Forall([(x_2:

>> obj) => ((pred(x_2) <-> (x_2 = y_1)):

>> prop)])

>> :prop)]))

>> {move 1}

postulate The2 pred, notunique that (the \

pred) = Empty

>> The2: [(pred_1:[(x_2:obj) => (---:prop)]),

>> (notunique_1:that ~(Exists([(y_3:obj)

>> => (Forall([(x_4:obj) => ((pred_1(x_4)

>> <-> (x_4 = y_3)):prop)])

>> :prop)]))

>> ) => (---:that (the(pred_1) = Empty))]

>> {move 0}

open

declare z obj

>> z: obj {move 2}
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declare in1 that z E x

>> in1: that (z E x) {move 2}

postulate ext1 in1 that z E y

>> ext1: [(.z_1:obj),(in1_1:that (.z_1 E

>> x)) => (---:that (.z_1 E y))]

>> {move 1}

declare in2 that z E y

>> in2: that (z E y) {move 2}

postulate ext2 in2 that z E x

>> ext2: [(.z_1:obj),(in2_1:that (.z_1 E

>> y)) => (---:that (.z_1 E x))]

>> {move 1}

close

postulate Extensionality ext1, ext2 that \

x=y

>> Extensionality: [(.x_1:obj),(.y_1:obj),(ext1_1:

>> [(.z_2:obj),(in1_2:that (.z_2 E .x_1))

>> => (---:that (.z_2 E .y_1))]),

>> (ext2_1:[(.z_3:obj),(in2_3:that (.z_3

>> E .y_1)) => (---:that (.z_3 E .x_1))])

>> => (---:that (.x_1 = .y_1))]

>> {move 0}

postulate Setof x pred obj

>> Setof: [(x_1:obj),(pred_1:[(x_2:obj) => (---:
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>> prop)])

>> => (---:obj)]

>> {move 0}

declare inev that (y E x) & pred y

>> inev: that ((y E x) & pred(y)) {move 1}

postulate Comp1 inev that y E Setof x pred

>> Comp1: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:

>> obj) => (---:prop)]),

>> (inev_1:that ((.y_1 E .x_1) & .pred_1(.y_1)))

>> => (---:that (.y_1 E (.x_1 Setof .pred_1)))]

>> {move 0}

declare inev2 that y E Setof x pred

>> inev2: that (y E (x Setof pred)) {move 1}

postulate Comp2 inev2 that y E x

>> Comp2: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:

>> obj) => (---:prop)]),

>> (inev2_1:that (.y_1 E (.x_1 Setof .pred_1)))

>> => (---:that (.y_1 E .x_1))]

>> {move 0}

postulate Comp3 inev2 that pred y

>> Comp3: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:

>> obj) => (---:prop)]),

>> (inev2_1:that (.y_1 E (.x_1 Setof .pred_1)))

>> => (---:that .pred_1(.y_1))]

>> {move 0}
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Basic primitives, equality, membership, set builder notation defined, along
with their basic rules of inference.

The definite description operator appears here because it is a logical oper-
ation and belongs right after equality. Its use is that it allows us to state the
Axiom of Replacement in a much simpler way below, using (Lestrade) functions;
a functional binary relation can readily be converted to a function using definite
description. In an unexpected interlock, I had to declare the empty set since I
use it as the default object.

Lestrade execution:

declare z obj

>> z: obj {move 1}

postulate pair x y obj

>> pair: [(x_1:obj),(y_1:obj) => (---:obj)]

>> {move 0}

postulate pair1 x y that x E pair x y

>> pair1: [(x_1:obj),(y_1:obj) => (---:that

>> (x_1 E (x_1 pair y_1)))]

>> {move 0}

postulate pair2 x y that y E pair x y

>> pair2: [(x_1:obj),(y_1:obj) => (---:that

>> (y_1 E (x_1 pair y_1)))]

>> {move 0}

postulate pair3 x y z that ((z E pair x y) \

-> ((z = x) V z = y))
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>> pair3: [(x_1:obj),(y_1:obj),(z_1:obj) =>

>> (---:that ((z_1 E (x_1 pair y_1)) -> ((z_1

>> = x_1) V (z_1 = y_1))))]

>> {move 0}

postulate Pow x obj

>> Pow: [(x_1:obj) => (---:obj)]

>> {move 0}

declare inev3 that z E y

>> inev3: that (z E y) {move 1}

declare inev4 [z,inev3 => that z E x] \

>> inev4: [(z_1:obj),(inev3_1:that (z_1 E y))

>> => (---:that (z_1 E x))]

>> {move 1}

postulate Pow1 inev4 that y E Pow x

>> Pow1: [(.y_1:obj),(.x_1:obj),(inev4_1:[(z_2:

>> obj),(inev3_2:that (z_2 E .y_1)) =>

>> (---:that (z_2 E .x_1))])

>> => (---:that (.y_1 E Pow(.x_1)))]

>> {move 0}

declare inev5 that y E Pow x

>> inev5: that (y E Pow(x)) {move 1}
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declare inev6 that z E y

>> inev6: that (z E y) {move 1}

postulate Pow2 inev5 inev6 that z E x

>> Pow2: [(.y_1:obj),(.x_1:obj),(inev5_1:that

>> (.y_1 E Pow(.x_1))),(.z_1:obj),(inev6_1:

>> that (.z_1 E .y_1)) => (---:that (.z_1

>> E .x_1))]

>> {move 0}

postulate Union x obj

>> Union: [(x_1:obj) => (---:obj)]

>> {move 0}

declare inev7 that z E y

>> inev7: that (z E y) {move 1}

declare inev8 that y E x

>> inev8: that (y E x) {move 1}

postulate Union1 inev7 inev8 that z E Union \

x

>> Union1: [(.z_1:obj),(.y_1:obj),(inev7_1:that

>> (.z_1 E .y_1)),(.x_1:obj),(inev8_1:that

>> (.y_1 E .x_1)) => (---:that (.z_1 E Union(.x_1)))]

>> {move 0}
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declare inev9 that z E Union x

>> inev9: that (z E Union(x)) {move 1}

postulate Union2 inev9 that Exists[y => (z \

E y) & (y E x)] \

>> Union2: [(.z_1:obj),(.x_1:obj),(inev9_1:that

>> (.z_1 E Union(.x_1))) => (---:that Exists([(y_2:

>> obj) => (((.z_1 E y_2) & (y_2 E .x_1)):

>> prop)]))

>> ]

>> {move 0}

postulate N obj

>> N: obj {move 0}

postulate N0 that Empty E N

>> N0: that (Empty E N) {move 0}

declare inev10 that x E N

>> inev10: that (x E N) {move 1}

postulate N1 inev10 that (pair x x) E N

>> N1: [(.x_1:obj),(inev10_1:that (.x_1 E N))

>> => (---:that ((.x_1 pair .x_1) E N))]

>> {move 0}
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open

declare x1 obj

>> x1: obj {move 2}

postulate I x1 prop

>> I: [(x1_1:obj) => (---:prop)]

>> {move 1}

postulate I1 that I Empty

>> I1: that I(Empty) {move 1}

declare i1 that I x1

>> i1: that I(x1) {move 2}

postulate I2 x1 i1 that I pair x1 x1

>> I2: [(x1_1:obj),(i1_1:that I(x1_1)) =>

>> (---:that I((x1_1 pair x1_1)))]

>> {move 1}

close

declare inev11 that x E N

>> inev11: that (x E N) {move 1}

postulate N3 I, I1,I2, inev11 that I x
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>> N3: [(I_1:[(x1_2:obj) => (---:prop)]),

>> (I1_1:that I_1(Empty)),(I2_1:[(x1_3:obj),

>> (i1_3:that I_1(x1_3)) => (---:that

>> I_1((x1_3 pair x1_3)))]),

>> (.x_1:obj),(inev11_1:that (.x_1 E N))

>> => (---:that I_1(.x_1))]

>> {move 0}

Here are all the specific provisions for sets in Zermelo set theory. Unordered
pairs, power sets, and unions are provided. I used the Zermelo implementation
of N.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare P obj

>> P: obj {move 1}

declare p obj

>> p: obj {move 1}

declare inev12 that p E P

>> inev12: that (p E P) {move 1}

declare inhabited [p,inev12 => that Exists[x=>x \

E p] \
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] \

>> inhabited: [(p_1:obj),(inev12_1:that (p_1

>> E P)) => (---:that Exists([(x_2:obj) =>

>> ((x_2 E p_1):prop)]))

>> ]

>> {move 1}

declare q obj

>> q: obj {move 1}

declare inev13 that q E P

>> inev13: that (q E P) {move 1}

declare inev14 that x E p

>> inev14: that (x E p) {move 1}

declare inev15 that x E q

>> inev15: that (x E q) {move 1}

declare disjoint [p,q,x,inev12,inev13,inev14, \

inev15 => that p=q] \

>> disjoint: [(p_1:obj),(q_1:obj),(x_1:obj),

>> (inev12_1:that (p_1 E P)),(inev13_1:that

>> (q_1 E P)),(inev14_1:that (x_1 E p_1)),
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>> (inev15_1:that (x_1 E q_1)) => (---:that

>> (p_1 = q_1))]

>> {move 1}

declare C obj

>> C: obj {move 1}

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}

define Oneintersect p C: Exists[y=>((y E \

p) & y E C) & Forall[z=>((z E p) & (z \

E C))->z=y] \

] \

>> Oneintersect: [(p_1:obj),(C_1:obj) => (Exists([(y_2:

>> obj) => ((((y_2 E p_1) & (y_2 E C_1))

>> & Forall([(z_3:obj) => ((((z_3 E p_1)

>> & (z_3 E C_1)) -> (z_3 = y_2)):prop)]))

>> :prop)])

>> :prop)]

>> {move 0}

postulate Choice P,inhabited,disjoint \

that Exists[C => Forall[p=>(p E P) -> Oneintersect \

p C] \

] \
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>> Choice: [(P_1:obj),(inhabited_1:[(p_2:obj),

>> (inev12_2:that (p_2 E P_1)) => (---:

>> that Exists([(x_3:obj) => ((x_3 E p_2):

>> prop)]))

>> ]),

>> (disjoint_1:[(p_4:obj),(q_4:obj),(x_4:

>> obj),(inev12_4:that (p_4 E P_1)),(inev13_4:

>> that (q_4 E P_1)),(inev14_4:that (x_4

>> E p_4)),(inev15_4:that (x_4 E q_4))

>> => (---:that (p_4 = q_4))])

>> => (---:that Exists([(C_5:obj) => (Forall([(p_6:

>> obj) => (((p_6 E P_1) -> (p_6 Oneintersect

>> C_5)):prop)])

>> :prop)]))

>> ]

>> {move 0}

clearcurrent

declare P obj

>> P: obj {move 1}

declare p obj

>> p: obj {move 1}

declare inev12 that p E P

>> inev12: that (p E P) {move 1}

declare inp that ~(p = Empty)

>> inp: that ~((p = Empty)) {move 1}
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postulate Chooselocal P inev12 inp obj

>> Chooselocal: [(P_1:obj),(.p_1:obj),(inev12_1:

>> that (.p_1 E P_1)),(inp_1:that ~((.p_1

>> = Empty))) => (---:obj)]

>> {move 0}

postulate Choselocally P inev12 inp that \

(Chooselocal P inev12 inp) E p

>> Choselocally: [(P_1:obj),(.p_1:obj),(inev12_1:

>> that (.p_1 E P_1)),(inp_1:that ~((.p_1

>> = Empty))) => (---:that (Chooselocal(P_1,

>> inev12_1,inp_1) E .p_1))]

>> {move 0}

The Axiom of Choice. We give a lengthy implementation along standard
lines. The last few lines give a primitive postulateion which implements local
choice from nonempty elements p of a set P , without attention to whether
its first argument P has disjoint elements. If P is a partition, this function
combined with Separation will build a choice set for P , and we believe this
postulateion gives no additional global information. As in the case of the Axiom
of Separation below, the fact that function is the primitive notion of Lestrade
makes life simpler in the second approach. We do note that in spite of our efforts
at localization the second approach allows definition of a global choice function:
to choose an element from any set A in a uniform way, apply the uniform choice
function to the first level of the cumulative hierarchy which has A as an element
as P and A as p. However, global choice is a conservative extension of ZFC:
our stronger formulation does not allow any new theorems of set theory to be
proved. It would not be equivalent if we passed to a theory with classes.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}
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declare y obj

>> y: obj {move 1}

declare f [x=> obj] \

>> f: [(x_1:obj) => (---:obj)]

>> {move 1}

declare A obj

>> A: obj {move 1}

postulate Image f, A obj

>> Image: [(f_1:[(x_2:obj) => (---:obj)]),

>> (A_1:obj) => (---:obj)]

>> {move 0}

postulate Image1 f, A that Forall[x=>(x E \

Image f, A) <-> Exists[y=>(y E A) &(f \

y) = x] \

] \

>> Image1: [(f_1:[(x_2:obj) => (---:obj)]),

>> (A_1:obj) => (---:that Forall([(x_3:obj)

>> => (((x_3 E Image(f_1,A_1)) <-> Exists([(y_4:

>> obj) => (((y_4 E A_1) & (f_1(y_4)

>> = x_3)):prop)]))
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>> :prop)]))

>> ]

>> {move 0}

This provides the Axiom of Replacement. Since we formulate it in terms of
functions, we needed to provide the definite description operator above to allow
demonstration of the usual form using functional binary relations.

A good question which someone asked is, how do we implement schemes?
This looks like a single axiom, but it actually is equivalent to a scheme in an
ordinary treatment. The reason is that we don’t have facilities to quantify over
the sort of functions from objects to objects which participates in the axiom
Image which implements Replacement. We are asserting this for each function
f from objects to objects, but not universally quantifying it. We could add
quantifiers over this type to our language, in which case we would in effect be
doing Morse-Kelley set theory. But we have to do it explicitly. This is an issue
with the old system Automath, which has a confusion of functions , objects, and
sorts in a crucial way which is in many ways very convenient but which causes
it to be automatically possible to define quantification on any sort whatsoever.
I think it is an interesting question whether a reasonably fluent implementation
of ZFC in Automath which is not also an implementation of Morse-Kelley is
even possible.

Similar remarks apply to the use of general functions from objects to propo-
sitions in the implementation of the Separation Axiom.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}
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postulate Foundation that Exists[y => \

(y E x) & Forall[z=> (z E y) -> ~(z E \

x)] \

] \

>> Foundation: that Exists([(y_1:obj) => (((y_1

>> E x) & Forall([(z_2:obj) => (((z_2 E y_1)

>> -> ~((z_2 E x))):prop)]))

>> :prop)])

>> {move 0}

This provides the axiom of foundation.
I’m considering continuing this file with a proof of the Well-Ordering Theo-

rem. This would be in a style not using pairing, just for fun.
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